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Abstract

Free and forced vibrations of a tyre are predicted using a wave/finite element (WFE) approach. A short circumferential

segment of the tyre is modelled using conventional finite element (FE) methods, a periodicity condition applied and the

mass and stiffness matrices post-processed to yield wave properties. Since conventional FE methods are used, commercial

FE packages and existing element libraries can be utilised. An eigenvalue problem is formulated in terms of the transfer

matrix of the segment. Zhong’s method is used to improve numerical conditioning. The eigenvalues and eigenvectors give

the wavenumbers and wave mode shapes, which in turn define transformations between the physical and wave domains.

A method is described by which the frequency dependent material properties of the rubber components of the tyre can be

included without the need to remesh the structure. Expressions for the forced response are developed which are

numerically well-conditioned. Numerical results for a smooth tyre are presented. Dispersion curves for real, imaginary and

complex wavenumbers are shown. The propagating waves are associated with various forms of motion of the tread

supported by the stiffness of the side wall. Various dispersion phenomena are observed, including curve veering, non-zero

cut-off and waves for which the phase velocity and the group velocity have opposite signs. Results for the forced response

are compared with experimental measurements and good agreement is seen. The forced response is numerically determined

for both finite area and point excitations. It is seen that the size of area of the excitation is particularly important at high

frequencies. When the size of the excitation area is small enough compared to the tread thickness, the response at high

frequencies becomes stiffness-like (reactive) and the effect of shear stiffness becomes important.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Tyre noise is a significant source of traffic noise at speeds over 40 km/h for passenger cars and over 60 km/h
for heavy lorries [1]. Understanding the vibrational behaviour of a tyre is thus becoming more important.
Measured spectra of tyre noise show a broad peak around 1 kHz at which frequency the wavelengths in the
tyre are short. At such high frequencies the computational cost of full finite element analysis (FEA) becomes
impractically large, e.g. [2,3]. Alternative approaches are therefore of interest and especially those based on the
response of the tyre in terms of waves.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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For simple structures such as a thin rod or a thin beam, wave properties (propagation, response for external
excitation, transmission and reflection) can be obtained analytically from the equations of motion, e.g. [4].
Several simple analytical wave models have been proposed to investigate waves in a tyre. The classical and
simple one-dimensional model using a curved beam subjected to in-plane tension and lying on an elastic
foundation was proposed by Böhm [5]. Pinnington extended the one-dimensional model to include the shear
stiffness and the rotary inertia of the tread and considered both shear and rotational waves [6]. Two-
dimensional models have been proposed by several researchers. Kropp et al. [7,8] developed a model for a
layered flat plate on an elastic foundation. They also investigated the contact model and the noise radiation
from a tyre [9]. Their extensive work is summarised in Refs. [10,11]. Pinnington modelled a tyre as a beam and
a plate on a sidewall impedance [12,13]. Muggleton et al. [14] modelled a tyre as three flat plates jointed by
springs. However, it is difficult or impossible to include details of practical tyre constructions in these
analytical models, hence other numerical solutions are desired.

A tyre is a complicated structure composed of steel and textile fibre-reinforced rubber sheets and several
different rubbers. A typical cross-section of a commercial tyre is illustrated in Fig. 1. Relatively few works
have investigated waves in a tyre using numerical methods. Bolton et al. [15,16] estimated the dispersion curves
from experimental data and from an FE model of a cylinder representing a tyre, but this approach provides
only approximate estimates of the propagating wavenumbers from measured or predicted natural frequencies.
An alternative numerical approach to investigate waves in complicated structures is the spectral finite element
(SFE) method, e.g. [17–20]. In the SFE method, the equation of motion is projected into the wave domain
such that

X
i

ð�jkÞiK̄i � o2M̄

" #
q ¼ f (1)

where k is the wavenumber, K̄ and M̄ are the spectral stiffness and mass matrices, q is the vector of nodal
degrees of freedom (DOFs), f is the forcing vector, j ¼

ffiffiffiffiffiffiffi
�1
p

and i is an integer. For real wavenumbers and
stiffness matrices, the solutions to Eq. (1) for real o may be found by solving a standard linear eigenvalue
problem. However, the wavenumber k may be complex such that solutions of k must be found for given real o.
In this case the eigenvalue problem becomes polynomial which is less easy to solve and more prone to
numerical conditioning problems. Nilsson [19] considered the application of the SFE method to a tyre. He
assumed the tyre to be a thin structure and modelled it using spectral shell elements. However, the method
needs special elements to be developed on demand which is not an insignificant task.

An alternative approach, the wave/finite element (WFE) method [21,22], can be used to investigate the
dynamic properties of complicated waveguides and is applied in this paper to the analysis of a realistic
automotive tyre. The method starts from an FE model of only a short segment of the waveguide. Since
conventional FE methods can be used for modelling the cross-section of the waveguide, existing commercial
FE packages, their meshing capabilities and element libraries can be fully utilised. The method involves
forming the mass and stiffness matrices of the segment of the waveguide, applying a periodicity condition and
post-processing the results to form an eigenvalue problem, whose solution yields the wavenumbers and wave
Fig. 1. Cross-section of a tyre.



ARTICLE IN PRESS
Y. Waki et al. / Journal of Sound and Vibration 323 (2009) 737–756 739
mode shapes. The approach adopted below is to formulate and solve a well-conditioned eigenvalue problem,
found from the dynamic stiffness matrix of the segment. In the literature, the WFE method has been applied
to investigate free wave propagation in a layered sandwich beam [21], a fluid-filled pipe [23] and thin-walled
structures [24]. The forced response can be calculated using wave properties. In the literature Duhamel et al.
[22] presented a formulation for calculating the forced response. Thompson [25] calculated the forced response
based on the receptance approach for a railway track. However, these approaches potentially suffer from ill-
conditioning problems for general waveguides for which the cross-section has many DOFs and care needs to
be taken to reduce these.

This paper describes free wave propagation and the forced response of a tyre using the WFE method.
Frequency dependent material properties of rubber [26] are included in the stiffness matrix without the need to
remodel the structure. If the structure is damped the wavenumbers become complex and are associated with
spatially decaying waves. In such a case the WFE method is particularly useful. By using numerically
determined freely propagating and decaying waves, a wave approach is developed to calculate the forced
response. A well-conditioned formulation for numerically determining the amplitudes of the directly excited
waves is found by exploiting the orthogonality of the left and right eigenvectors. Wave amplitudes at a
location in the tyre are calculated by considering wave propagation and the response is then determined by
superimposing the wave amplitudes at the response point. The predicted forced response is compared with
experiment and good agreement is seen.

In the next section the WFE method is briefly reviewed. Section 3 concerns determination of the forced
response of a waveguide. In Section 4 the WFE method is applied to a tyre with frequency dependent elastic
properties. Sections 5 and 6 contain simulations and experimental results.

2. Formulation of the WFE method

The method by which wave properties are extracted from an FE model of a short segment of a waveguide is
described in this section. Further details can be found for example in Refs. [21,27]. The WFE method starts
from an FE model of only a short segment of the waveguide. The dynamic stiffness matrix of the segment is
obtained and a periodicity condition applied. This results in an eigenvalue problem which can be formulated
in a number of ways. The eigenvalue problem is prone to poor numerical conditioning, especially for one-
dimensional waveguides, such as the tyre, for which there are many dofs across the cross-section. For such
cases, and especially when damping is present, care needs to be taken in the formulation of the eigenvalue
problem. The approaches, together with issues concerning numerical conditioning, are described.

2.1. Dynamic stiffness matrix

Consider a short of segment of length D of a uniform waveguide as shown in Fig. 2. The equation for time
harmonic motion of the segment can be written as

Dq ¼ f (2)

where

D ¼ Kþ joC� o2M (3)

is the dynamic stiffness matrix, q and f the vectors of nodal dofs and forces and K, C and M are the stiffness,
viscous damping and mass matrices which are formed using conventional FE methods. The stiffness matrix K

may be complex if structural damping is present. Time harmonic motion expðjotÞ is implicit throughout this
Fig. 2. A segment of a uniform waveguide.
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paper. Eq. (3) can be rearranged in matrix form as

DLL DLR

DRL DRR

" #
qL

qR

" #
¼

fL

fR

" #
(4)

where the subscripts L and R represent the left and right hand sides of the segment. For uniform waveguides

DT
LL ¼ DLL; DT

RR ¼ DRR; DT
LR ¼ DRL (5)

where ð�ÞT indicates the transpose.
If the section has internal nodes as shown in Fig. 3, the associated dofs can be condensed. When no external

force is applied to the internal nodes the equation of motion may be expressed as

D̃LL D̃LR D̃LI

D̃RL D̃RR D̃RI

D̃IL D̃IR D̃II

2
64

3
75

qL

qR

qI

2
64

3
75 ¼

fL

fR

0

2
64

3
75 (6)

The subscript I represents dofs which are associated with the internal nodes. These can be dynamically
condensed as [27,28]

½D̃MM � D̃MI D̃
�1

II D̃IM �qM ¼ fM (7)

where

D̃MM ¼
D̃LL D̃LR

D̃RL D̃RR

" #
; D̃MI ¼

D̃LI

D̃RI

" #
; D̃IM ¼ ½D̃IL D̃IR�; qM ¼

qL

qR

" #
; fM ¼

fL

fR

" #
(8)

In this paper any dofs associated with internal nodes are condensed so that the resulting equation of motion
has the form of Eq. (4).

2.2. Transfer matrix and transformation to the wave domain

Under the passage of a wave with wavenumber k, a periodicity condition [29] holds so that

qR ¼ lqL; l ¼ expð�jkDÞ (9)

while equilibrium implies that

½lI I�
fL

fR

( )
¼ 0 (10)

and I is the identity matrix. These equations can be used to project Eq. (4) onto the dofs qL by premultiplying
by lI I½ �. This results in an eigenvalue problem which, in principle, yields the eigenvalues l and consequent
eigenvectors (the wave mode shapes) but this formulation is prone to poor numerical conditioning and an
approach based on Zhong’s method [30], described later in this section, is preferred.
Fig. 3. A segment with an internal node.

Fig. 4. A series of segments.
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Consider a series of segments of the waveguide as shown in Fig. 4. Continuity of displacement and force
equilibrium of adjacent segments then gives

q
ðnþ1Þ
L

f
ðnþ1Þ
L

" #
¼

q
ðnÞ
R

�f
ðnÞ
R

" #
¼ T

q
ðnÞ
L

f
ðnÞ
L

" #
¼ l

q
ðnÞ
L

f
ðnÞ
L

" #
(11)

where T is the transfer matrix. Free wave motion over any section of length D is therefore described in the
form of an eigenvalue problem such that

T/i ¼ li/i. (12)

The transfer matrix T is given in terms of the elements of the dynamic stiffness matrix by [21,22]

T ¼
�D�1LRDLL D�1LR

�DRL þDRRD
�1
LRDLL �DRRD

�1
LR

" #
. (13)

The eigenvalue li in Eq. (12) describes wave propagation over a distance D such that [29]

li ¼ expð�jkiDÞ (14)

where ki represents the wavenumber for the ith wave as in Eq. (9). The wavenumber can be purely real, purely
imaginary or complex, associated with a propagating, a nearfield (evanescent) or an oscillating decaying wave,
respectively. The right eigenvector corresponding to the ith eigenvalue can be written as

/i ¼
/q;i

/f ;i

( )
(15)

The eigenvector represents a wave mode and describes the nodal displacements /q;i and associated internal
forces /f ;i under the passage of the ith wave.

The eigenvalues come in pairs and are of the form l�i ¼ expð�jkiDÞ, which represent positive- and negative-
going wave pairs. The eigenvalues and associated eigenvectors are then expressed as ðli;/

þ
i Þ and ð1=li;/

�
i Þ.

Positive-going waves are those for which jlijo1, i.e. the amplitude decreases in the direction of propagation,
or if jlij ¼ 1, the power is positive, i.e. Refio/H

f ;i/q;igo0 [21,31] where ð�ÞH represents the complex conjugate
transpose, or Hermitian.

The eigenvalue problem (12) may be written using the eigenvalues and left eigenvectors as

wiT ¼ liwi (16)

The left and right eigenvalues are identical, while the orthogonality relations between the left and right
eigenvectors can be expressed as

wi/j ¼ didij (17)

where dij is the Kronecker delta and di is arbitrary. It is often convenient to normalise the eigenvectors such
that di ¼ 1.

The matrices

Uþq ¼ ½/
þ
q;1 /þq;2 . . . /þq;n�; Wþq ¼

wþq;1
wþq;2

wþq;n

8>>>><
>>>>:

9>>>>=
>>>>;

(18)

can be formed from the eigenvectors, n being the total number of dofs on the left hand side of the modelled
segment. Similar expressions hold for U�q ;W

�
q ,U

�
f and W�f . These matrices, together with the orthogonality

relations of Eq. (17), define transformations between the physical domain, in which the motion is described in
terms of q and f and the wave domain, in which the motion is described in terms of the amplitudes aþ and a�
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of the waves travelling in the positive and negative directions, respectively. Specifically

q ¼ Uþq a
þ þU�q a

�; f ¼ Uþf a
þ þU�f a

�. (19)

In practice, as in modal analysis, only a number m of the wave modes might be kept, so that the matrices U�q;f
and W�q;f are n�m and m� n, respectively. The kept (positive-going) wave modes would be those for which jlj
is close to unity. The reasons for reducing the size of the wave basis are partly that the size of the model is
smaller, but primarily that the calculation of the high order wave modes, which decay very rapidly with
distance (by orders of magnitude over the element length), is prone to poor numerical conditioning.

2.3. Conditioning of the eigenvalue problem

The eigenvalue problem of Eq. (12) may suffer from poor numerical conditioning, typically because there
are often both very large and very small eigenvalues. These represent wave modes that attenuate very rapidly
with distance either in the positive or negative direction. Conditioning can be improved using Zhong’s method
[30], which exploits the symplectic properties of the system matrices. The method starts from a reformulation
of Eq. (12) into the relationships for the displacement vectors alone. After some manipulation, the eigenvalue
problem becomes

0 DLR

�DRL 0

" #
/q;i

l/q;i

" #
¼ 1ðli þ 1=liÞ

ðDLR �DRLÞ �ðDLL þDRRÞ

ðDLL þDRRÞ ðDLR �DRLÞ

" #
/q;i

li/q;i

" #
. (20)

Note that the eigenvalues of most interest are those for which jlþ 1=lj is the smallest. This eigenvalue
problem has repeated eigenvalues of lþ 1=l. The original displacement eigenvectors in Eq. (15) are given by a
linear combination of the repeated eigenvectors of Eq. (20) [21,22]. The force eigenvectors are given from the
first row of Eq. (4) together with Eq. (9) by

/f ;i ¼ ðDLL þ liDLRÞ/q;i. (21)

Numerical issues concerning the determination of the eigenvectors and an application of singular value
decomposition to improve numerical difficulties are described in Refs. [27,32].

In this paper the formulation (20) is used to determine free wave propagation characteristics in a tyre.

2.4. Group velocity

The group velocity is the velocity at which the energy propagates. The group velocity cg;i for the ith wave
mode can be calculated from power and energy as [21,33]

cg;i ¼
Pi

Etot;i
(22)

where

Pi ¼ �
1

2
Refjo/H

f ;i/q;ig ¼ �
o
2
Imf/H

f ;i/q;ig (23)

is the time-averaged power transmitted thorough the cross-section and Etot is the total energy density per unit
length. This is given by

Etot;i ¼ Ep;i þ Ek;i,

Ep;i ¼
1

4D
Re ½/H

q;i li/
H
q;i�K

/q;i

li/q;i

( )( )
,

Ek;i ¼ �
o2

4D
Re ½/H

q;i li/
H
q;i�M

/q;i

li/q;i

( )( )
(24)
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where Ep,i and Ek,i represent the potential and kinetic energy densities for the ith wave mode. The dissipated
power follows from the imaginary part of K and/or the damping matrix C.

3. Forced response using a wave approach

The forced response of a waveguide can be calculated from knowledge of the properties of wave
propagation. The steps involved are: (1) solving for free wave propagation; (2) determining the amplitudes of
directly excited waves assuming the waveguide is infinite; (3) determining the reflection and transmission
matrices for boundaries etc; (4) superimposing wave amplitudes at a response point by considering wave
propagation between various stations in the waveguide. When a waveguide forms a ring, such as the tyre
considered here, step (3) is not required, there being no boundaries. The formulation presented here is well-
conditioned and can be used for general waveguides in which there are many wave modes.

3.1. Determining the amplitudes of directly excited waves

Eq. (19) provides a transformation by which the displacement and forces in the physical domain can be
represented in the wave domain, e.g. [34]. To calculate the amplitudes of the directly excited waves, an external
force in the physical domain is first decomposed into the wave domain. When an external excitation fext is
applied to an infinite waveguide at a point as shown in Fig. 5, continuity of displacement and force
equilibrium at the excitation point give in matrix form

Uþq �U�q
Uþf �U�f

" #
eþ

e�

� �
¼

0

fext

" #
(25)

where e� are column vectors of the amplitudes of the directly excited waves and the matrices U�q , U�f contain
the kept displacement and force eigenvectors. As discussed in Section 2.2, the direction of wave propagation is
determined by the magnitude of the wavenumber or the direction of energy flow for undamped waves, i.e. the
sign of the group velocity. If all the wave modes are kept the excited wave amplitudes, e�, may be directly
determined from Eq. (25) as

eþ

e�

� �
¼

Uþq �U�q
Uþf �U�f

" #�1
0

fext

" #
. (26)

However, numerical problems are likely to occur for complicated structures because of ill-conditioning of the
matrix to be inverted. To avoid these problems, only certain wave modes are kept.

A numerical implementation is here proposed which exploits the orthogonality of the left and right
eigenvectors of the transfer matrix, i.e. Eq. (17). Premultiplying Eq. (25) by the left eigenvector matrix W�

gives

Wþf Wþq
W�f W�q

" #
Uþq �U�q
Uþf �U�f

" #
eþ

e�

� �
¼

Wþf Wþq
W�f W�q

" #
0

fext

" #
, (27)

which leads to

WþUþ 0

0 �W�U�

" #
eþ

e�

� �
¼

Wþq fext
W�q fext

" #
. (28)
Fig. 5. Waves directly excited by local harmonic excitation applied at a point.
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If the eigenvectors are normalised so that di ¼ 1 in Eq. (17) then W�U� ¼ I. With these normalised
eigenvectors, Eq. (28) becomes

eþ ¼ Wþq fext,

e� ¼ �W�q fext. (29)

Eq. (29) is always well-conditioned and the ill-conditioning in Eq. (26) can be removed.
3.2. Total wave amplitude: wave superposition

The displacement of the waveguide is in general expressed as (Eq. (19))

q ¼ Uþq a
þ þU�q a

� ¼
Xm

i¼1

ð/þq;ia
þ
i þ /�q;ia

�
i Þ. (30)

The wave amplitudes a�i can be determined considering wave propagation, and subsequent reflection if the
waveguide has a boundary. Consider a waveguide forming a circular shape as shown in Fig. 6. The wave
amplitudes aþ and g� travelling away from the excitation point are given by the sum of the directly excited
waves eþ and e� and the incident waves a� and gþ by

aþ ¼ eþ þ gþ,

g� ¼ e� þ a�. (31)

The incident waves, found by considering wave propagation around the circumference, are

gþ ¼ s�ð2pÞaþ; a� ¼ s�ð2pÞg� (32)

where

s�ðfÞ ¼ diagfexpð�jk�1fÞ; expð�jk
�
2fÞ; . . . ; expð�jk

�
nfÞg (33)

is the wave propagation matrix, f is an angle around the circumference of the circle,

k� ¼ kR (34)

is the polar wavenumber and R is a radius. The case k� ¼ n, with n an integer, corresponds to the nth
resonance in the circumferential. The wave amplitudes at the input point a� can thus be expressed as

aþ ¼ fI� s�ð2pÞg�1eþ,

a� ¼ fI� s�ð2pÞg�1e� � e� (35)
Fig. 6. Waves in a circular structure.
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The wave amplitudes at some response point are

bþ ¼ s�ðfrÞa
þ,

b� ¼ s�ð2p� frÞða
� þ e�Þ (36)

where fr is the angle between the excitation and the response point. The physical response is then found from
Eq. (19).

4. WFE modelling of a tyre

A ‘slick’ tyre attached to an aluminium rim, as shown in Fig. 7, together with material data was provided by
Bridgestone Corporation. A tyre can be regarded as a one-dimensional waveguide in the circumferential
direction. In this section, a WFE model of the tyre is described. Frequency dependent material properties of
rubber are considered.

4.1. Modelling of a short segment

A short segment of the tyre was modelled as shown in Fig. 8 using ANSYS 7.1. The coordinates and
representative dimensions are shown in Fig. 9. The eight node solid element SOLID 46, which generates
Fig. 7. Tyre (195/65R15) with an aluminium rim.

Fig. 8. Segment of the WFE tyre model: (a) tyre cross-section; (b) segment in the circumferential direction.
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Fig. 9. Coordinates and a WFE model of the tyre segment.
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equivalent anisotropic material properties for a layered structure, was used to represent the layered structure
as shown in Fig. 1. The element has three translational dofs at each node. 28 elements were used to model the
cross-section.

A segment of the tyre subtending an angle of 2Dj ¼ 1:8� was modelled. To represent the curvature of the
tyre, adjacent segments of the tyre are connected together with their local coordinates being rotated through
angles of �Djð0:9

�Þ. This models the curved tyre as being composed of piecewise-plane elements. An internal
pressure of 200 kPa was simulated by the application of surface loads on the elements [27,35]. Boundary
conditions at the wheel rim were imposed by setting the dofs to zero. The number of dofs was 324 after the
condensation of interior dofs.
4.2. Inclusion of frequency dependent material properties of rubber

Material properties of rubber depend on frequency [26]. To include the frequency dependent properties of
rubber, the stiffness matrix was decomposed as

Kðf Þ ¼ Kfibre þ Krubberðf Þ þ Ktension (37)

where f ¼ o=2p is frequency in Hz. The stiffness matrices Kfibre and Ktension represent the frequency
independent contributions of the fibres and the in-plane tension due to the internal pressure. The latter was
derived from the difference between two stiffness matrices associated with FE models with and without the
internal pressure. The stiffness matrix of the rubber elements is frequency dependent. If Poisson’s ratio is
assumed constant, the stiffness matrix is proportional to the Young’s modulus E. The frequency dependent
stiffness matrix Krubberðf Þ at frequency f is then given by

Krubberðf Þ ¼
Eðf Þ

Eðf 0Þ
Krubberðf 0Þf1þ jZðf Þg (38)

where Zðf Þ is the frequency dependent loss factor and f0 is a reference frequency at which the stiffness matrix
Krubberðf 0Þ is evaluated (neglecting damping). Eq. (38) allows one to include the frequency dependent stiffness
and loss factor without remodelling the structure.

To determine Eðf Þ and Zðf Þ in Eq. (38), the rubbers were assumed to behave in the same manner as the
American National Standards Institute (ANSI) standard polymer for which data is available in the literature
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[36]. In the frequency range of interest ð0ofp2kHz; 30 �CÞ, E(f) and Zðf Þ may be approximated by [36]

logðEðf ÞÞ ¼ aE � logðf Þ þ bE , (39)

Zðf Þ ¼ aZ � logðf Þ
2
þ bZ. (40)

The coefficients were estimated from Ref. [36] to be aE ¼ 0:1; aZ ¼ 0:01; bZ ¼ 0:1 and bE was determined from
given material data for each rubber.

For the tyre model, the effect of the change in the stiffness of the rubber is relatively small in the frequency
range analysed because the magnitudes of the elements of Kfibre (and Ktension) are much larger than the changes
in the elements of Krubberðf Þ. The Young’s modulus of the rubber is typically of the order of Oð107Þ and
changes in the Young’s modulus are of the same order. On the other hand, the Young’s modulus of the textile
fibres is Oð109Þ and that of the steel fibres is Oð1011Þ.

5. Free vibration

In this section the dispersion curves are presented including results for purely real, purely imaginary and
complex wavenumbers. No damping is assumed for clarity. Complicated dispersion curves are presented.
Phenomena such as curve veering and cut-on with a non-zero wavenumber are observed. Waves in which the
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group velocity and the phase velocity are of opposite signs are observed. Bifurcations from two different
purely imaginary to complex conjugate wavenumbers and vice versa are illustrated. The group velocities are
numerically determined from the power and energy relationship.

5.1. Dispersion curves

The dispersion curves are numerically determined from the WFE model of the tyre. For RefkgX0, the
dispersion curves below 600Hz are shown in Fig. 10 for the asymmetric modes (Ai) and in Fig. 11 for the
symmetric (Si) modes. Only the wavenumbers which are associated with predominantly flexural or
predominantly transverse shear motions in the cross-section of the tyre are plotted. The polar wavenumber
(rad/rad) k� ¼ kRðR ¼ 0:3185Þ is shown. Natural frequencies occur when k� ¼ 1; 2 . . . for the k*th
circumferential mode order and also at k� ¼ 0 for a breathing mode. Results for purely real, purely
imaginary and complex (conjugate) wavenumbers are shown. Only wavenumbers for which Im(k) is small are
shown for clarity. Wave modes in which the wave is characterised by predominantly transverse shear and/or
longitudinal motion are denoted by TAi

or TSi
.

The asymmetric A1 wave mode cuts-on first at about 35Hz (Fig. 10). This mode comprises side-to-side
motion of the tread as illustrated in Fig. 10(a). The A1 wave mode and the symmetric S1 wave mode
(Fig. 11(a)) are bouncing modes where the tread mass is vibrating on the sidewall stiffness. The A2 (Fig. 10(c)),
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Fig. 11. Dispersion curves of the tyre for the symmetric modes: — purely real; � � � purely imaginary; – � – complex conjugate

wavenumbers. Ti denotes the shear wave mode. Small figure (a)–(d) illustrates the deformation associated with each wave mode: ___
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S2 (Fig. 11(b)) and higher wave modes are cross-sectional modes where the cross-sectional deformation
becomes more complex, with more nodes of the wave mode across the cross-section.

All wavenumbers at low frequencies are purely imaginary or part of a complex conjugate pair. Complex
conjugate wavenumbers can bifurcate into two purely imaginary or purely real wavenumbers. In Fig. 10 a
bifurcation from two different purely imaginary to complex conjugate wavenumbers is seen around 120Hz.
Below 120Hz there are two purely imaginary wavenumbers associated with the A2 and TA1 wave modes. At
120Hz the wavenumbers become a complex conjugate pair in which the wave modes are associated with both
the A2 and TA1 motions. Another bifurcation from complex conjugate into two real wavenumbers can be seen
at 220Hz. At 220Hz the imaginary parts of the complex conjugate wavenumbers become zero and waves start
propagating with a non-zero purely real wavenumber. Above the cut-on frequency one wavenumber increases
with frequency while the other decreases. For the frequency range where the wavenumber decreases with
frequency, the wave is characterised by the phase and group velocities having opposite signs. The wave cuts-
off at 250Hz and the wavenumber becomes purely imaginary. The wavenumber becomes purely real again at
273Hz and the wave starts propagating as the TA1 wave mode.

Around 280Hz in Fig. 10, curve veering between the dispersion curves for the A1 and A2 wave modes is
seen. When two wave modes are not orthogonal in the wave domain and their wavenumbers are nearly equal,
dispersion curves do not cross each other and the wavenumbers rapidly change. Such a phenomenon is called
curve veering, e.g. [37,38]. The shape of the wave mode changes around the frequency where the veering
occurs. An example is shown in Figs. 10(a) and (b) for the A1 mode.

The phenomena discussed above can be seen in Fig. 11 for the symmetric wave modes. In particular
complicated cut-on phenomena are observed around 330Hz where the S2 wave mode cuts-on. The dispersion
curves around the cut-off of the S2 mode are shown in Fig. 12 for a narrow frequency range around the cut-off
frequency. The non-zero cut-off of the S2 mode occurs at around 326.8Hz above which frequency there are
two propagating waves. One wavenumber increases with frequency and the other decreases and becomes
complex (conjugate) around 327.0Hz where the S2 and TS1 modes couple. The complex conjugate waves again
become two propagating waves at around 332.8Hz.

All the propagating wavenumbers associated with symmetric wave modes in the frequency range of interest,
i.e. up to 2 kHz, are shown in Fig. 13. In total 8 wave modes propagate at 1 kHz and there are 4 Si and 4 Ti

wave modes. At 2 kHz 16 waves propagate (8 Si and 8 Ti wave modes) in total. Veering between successive
mode orders is clear.
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Fig. 12. Dispersion curves around the cut-on of the S2 mode: — purely real; � � � purely imaginary; – � – complex conjugate wavenumbers.
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5.2. Group velocity

The group velocity can be calculated numerically using the power and energy relationship Eq. (22). The
group velocities associated with the S1, S2, TS1 modes are shown in Fig. 14. The group velocity associated with
predominantly flexural motion (S1, S2) is typically about 80m/s (80p rad/s) and that for shear motion (TS1) is
about 240m/s (240p rad/s). These values are similar to results in [16]. Fig. 15 focuses on the frequencies where
the S2 mode cuts-on. Three waves propagate in the frequency between 333 and 341Hz and between 326.8 and
327.0Hz. For both frequency ranges shown there is one wave propagating in the positive direction with a
positive group velocity but a negative phase velocity.

6. Forced vibration

In this section the forced response of the tyre, calculated using the wave approach described in Section 3, is
presented and compared with experimental data. Damping is included. In the experiments excitation was
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applied to the centre of the tread of the tyre such that only the symmetric wave modes are strongly excited. The
size of the region over which the excitation is applied affects the response, especially at high frequencies.

6.1. Experimental setup

The tyre attached to the rim was suspended using flexible rubber strings as shown in Fig. 16. The excitation
was a random signal applied by a shaker attached to the tread centre through a relatively rigid metal disc of
diameter d ¼ 23:5 mm and 1mm thickness as shown in Fig. 17. As the measured tyre was freely suspended,
the dynamic response below 30Hz is dominated by rigid body motions [27]. Also a resonance of the
experimental rig occurs at around 2700Hz [27] such that measured data is expected to be reliable between 30
and 2700Hz. Measured signals were analysed using a Hanning window and averaged (at least 30 averages).
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Fig. 17. Excitation arrangement.

Fig. 18. Modelling the excited region: — experimental; – – numerical modelling: o nodes where excitations are applied; - - - the FE mesh.
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The room temperature was about 30 1C throughout the measurement. Mass cancellation [39] was applied by
post-processing the measured data to cancel the mass loading of the force transducer and the accelerometer.

Various limitations of the WFE model to predict the behaviour of the experiment must be acknowledged.
The boundary conditions at the rim are assumed fixed, so that rigid body modes, whose effects are particularly
noticeable below 30Hz, are not modelled and nor are modes of the rim. The presence of air in the tyre, apart
from its effect in inducing tension in the tyre, is also not modelled. There are consequently acoustic cavity
resonances whose effects are not modelled. These are, however, only important over very limited frequency
ranges [19]. Including these is the subject of future work. Finally no attempt has been made to update the
model parameters: manufacturer’s data and the ANSI polymer model of Eqs. (39) and (40) were used. All
these limit the expected accuracy.
6.2. Forced response of a tyre with finite area excitation

The forced response is calculated using the wave approach. A frequency dependent loss factor Zðf Þ for the
rubber was included in Eq. (38). The waves with small values of jImðk�Þj were retained to calculate the forced
response. The resulting number of kept positive- and negative going wave pairs in the frequency range
analysed was about 70. In the experiment excitation was applied through a relatively rigid disc. In the analysis
this was simulated by point forces applied at a number of nodes as shown in Fig. 18. The excitation applied in
the experiment was modelled as being distributed over an oval shape such that the areas excited are the same.
The weighted average responses from 5 different excitation points corresponding to these nodes were found.
The relative weights chosen for each node were in proportion to the area excited.
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The predicted and measured forced responses of the tyre are shown in Fig. 19. Reasonable agreement
between the predicted results and the measured data can be seen. Note that no attempt was made to update the
data provided by the manufacturer. Doing this would of course improve the agreement.

The response of the tyre can be divided into three regions. Below the first resonance at around 90Hz, where
the S1 mode cuts-on, the sidewall stiffness is dominant and the response is stiffness controlled. The effects of
rigid body modes are also most noticeable in this frequency range. Above the first resonance, and up to 300Hz
or so, there are several resonance peaks associated with vibrational modes of the tyre around the
circumference, with the deformation across the tread and sidewall being in the S1 mode. Here the response is
similar to that of a beam on an elastic foundation. Above 350Hz, where the S2 mode cuts-on, the response
becomes more or less constant. Because of the level of damping individual resonances overlap and distinct
resonance peaks cannot be clearly identified. At high frequencies the response tends to that of a plate with
finite shear stiffness, or that of an elastic half space with excitation applied over a finite area. This is discussed
further in the next subsection.

The predicted frequency of the first resonance is smaller than the measured result, but the frequency
difference between successive peaks is larger. This implies that the stiffness across the tread and sidewall is
smaller than that of the real tyre but that in the circumferential direction is larger.
6.3. Effect of the size of the excited area

The structural response is particularly sensitive to the spatial distribution of the excitation at high
frequencies where the wavelengths become small. For example, consider an excitation of uniform force f0 per
unit length, applied along a line of length 2r. The force injected into a wave mode with wavenumber k takes
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the form

f ðkÞ	
f 0

2p

Z r

�r

expðjkrÞdr ¼
f 0r

p
sinðkrÞ

kr
. (41)

For kr51, Eq. (41) gives f ðkÞ 
 f 0r=p and the value is independent of k. But for kr ¼ Oð1Þ or larger, the
effective force on the wave mode decreases and the wave is not excited as strongly.

In addition, if the thickness of the structure, h, is not small enough compared to the radius of excitation,
typically when h=rX5, the response of the structure approaches that of an elastic half space so that the shear
stiffness and local stiffness become more important [40].

To illustrate the effect of the spatial distribution of the excitation, the responses of the tyre for both the finite
area excitation and point excitation are shown in Fig. 20. At low and moderate frequencies the responses are
almost the same but their asymptotes at high frequencies differ. The shear deformation becomes more
important for the point force excitation and the response becomes reactive. These numerical results show that
the dynamic behaviour of a tyre at high frequencies can be strongly affected by the distribution of the
excitation and also that an assumption of a ‘thin’ structure can break down.

7. Conclusions

Free and forced vibrations of a tyre were predicted using a WFE method. A short segment of the tyre was
modelled using a commercial software package (ANSYS). The dynamic stiffness matrix of the segment was
post-processed to extract free wave propagation characteristics. Since only a short segment needs to be
modelled, the resulting number of dofs (324 in the example shown) is small and the calculation cost is small.
The eigenvalue problem is solved at each selected frequency. Frequency dependent material properties of
rubber can therefore be included straightforwardly.
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Free wave propagation was predicted and complicated dispersion phenomena were observed. Curve veering
between dispersion curves was observed and rapid changes of the wavenumber were shown. The non-zero cut-
on phenomena was also seen for waves for which the predominantly flexural and longitudinal and/or shear
waves couple. Associated with the non-zero cut-on phenomena, the existence of a pair of propagating waves
for which the signs of the phase and group velocities are opposite were observed.

The forced response was calculated using the wave approach. The amplitudes of directly excited waves were
found first using a well-conditioned formulation and a reduced basis, i.e. by retaining only the most important
wave modes. The total wave amplitudes were found by superposition, considering wave propagation around
the tyre in the circumferential direction. The predicted results were compared with experiment results and
good agreement was seen. At high frequencies the response approaches that of a plate with finite shear
stiffness or that of an elastic half space. The size of the region over which excitation is applied was discussed.
This affects the response and was seen to be particularly important at high frequencies. In summary, the WFE
method allows predictions to be made of the vibrational response of a tyre to many kHz, at low computational
cost and including details of the construction of the tyre.
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